skip to main content


Search for: All records

Creators/Authors contains: "Liu, Yifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. A passive electrochemical coupling approach is proposed to induce spontaneous synchronization between chemical oscillators. The coupling exploits the potential difference between a catalyst redox couple in the Belousov–Zhabotinsky (BZ) reaction, without external feedback, to induce surface reactions that impact the kinetics of the bulk system. The effect of coupling in BZ oscillators under batch condition is characterized using phase synchronization measures. Although the frequency of the oscillators decreases nonlinearly over time, by a factor of 2 or more within 100 cycles, the coupling is strong enough to maintain synchronization. In such a highly drifting system, the Gibbs–Shannon entropy of the cyclic phase difference distribution can be used to quantify the coupling effect. We extend the Oregonator BZ model to account for the drifting natural frequencies in batch condition and for electrochemical coupling, and numerical simulations of the effect of acid concentration on synchronization patterns are in agreement with the experiments. Because of the passive nature of coupling, the proposed coupling scheme can open avenues for designing pattern recognition and neuromorphic computation systems using chemical reactions in a spontaneous process. 
    more » « less
  3. null (Ed.)
    Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average approximations (SAA). When compared with the solutions obtained using the SAA procedure, SD provides solutions of similar quality in far less computational time using ordinarily available computational resources. However, previous versions of SD were not applicable to problems with randomness in second-stage cost coefficients. In this paper, we extend its capabilities by relaxing this assumption on cost coefficients in the second stage. In addition to the algorithmic enhancements necessary to achieve this, we also present the details of implementing these extensions, which preserve the computational edge of SD. Finally, we illustrate the computational results obtained from the latest implementation of SD on a variety of test instances generated for problems from the literature. We compare these results with those obtained from the regularized L-shaped method applied to the SAA function of these problems with different sample sizes. 
    more » « less
  4. Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step to study semiconductor quantum optics. Here we report on the signature of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2and a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity. This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum photonic platform.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract Polycomb group (PcG) proteins are widely utilized for transcriptional repression in eukaryotes. Here, we characterize, in the protist Tetrahymena thermophila, the EZL1 (E(z)-like 1) complex, with components conserved in metazoan Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The EZL1 complex is required for histone H3 K27 and K9 methylation, heterochromatin formation, transposable element control, and programmed genome rearrangement. The EZL1 complex interacts with EMA1, a helicase required for RNA interference (RNAi). This interaction is implicated in co-transcriptional recruitment of the EZL1 complex. Binding of H3K27 and H3K9 methylation by PDD1—another PcG protein interacting with the EZL1 complex—reinforces its chromatin association. The EZL1 complex is an integral part of Polycomb bodies, which exhibit dynamic distribution in Tetrahymena development: Their dispersion is driven by chromatin association, while their coalescence by PDD1, likely via phase separation. Our results provide a molecular mechanism connecting RNAi and Polycomb repression, which coordinately regulate nuclear bodies and reorganize the genome. 
    more » « less